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Synopsis 

Our volume-entropy-energy ( V S E )  equation of state for liquids, first proposed in 1973 for use 
with low molecular weight homogeneous liquids, is here applied for the first time to a high molecular 
weight liquid that is heterogeneous in molecular weight, namely, a molten polymer. Four thermo- 
dynamic quantities, T, s, cp,  and c, are calculated over the range of 600-725 K a t  ambient pressure 
and are compared with experimental values, with excellent results. The grand average, of the 
standard percentage errors (S.P.E.) for the 24 points is 0.1100%. 

INTRODUCTION 

The purpose of this paper is to show that systems containing molecules of high 
molecular weight, heterogeneous with respect to size, do not affect the successful 
application of our VSE equation of state to the calculation of thermodynamic 
quantities in what we call “the region of regular performance.” Since the ap- 
plication of external pressure broadens the “region of irregular performance,” 
our equation is not recommended for use with polymeric systems under high 
pressure. Many other thermodynamic quantities can be calculated from our 
equation, but we chose to present only those quantities for which corresponding 
experimental values are available in the literature for comparison with the cal- 
culated values. This is done merely to demonstrate the capabilities of the 
equation. 

Our VSE equation of state’ is 

E = f& + f3 (1) 

where E is specific energy, s is specific entropy, and fl, f2, and f3 are volume- 
dependent functions, defined below. 

We have proposed2 that in every liquid there is a region over which the frac- 
tional change in entropy is directly proportional to the fractional change in 
temperature. We call this “the region of regular performance.” We have shown3 
that this region extends from a temperature somewhat above the melting tem- 
perature all the way to the critical temperature. Our equation has been applied 
to a variety of homogeneous liquids of low molecular weight: such as aliphatic 
and aromatic organic liquids, polar and nonpolar liquids including water, and 
liquid  metal^.^?^ This paper reports on our first study of a high molecular weight 
liquid heterogeneous with respect to molecular weight, namely, poly(tetraflu0- 
roethylene). Since the results of the calculations here reported are uniformly 
excellent (grand average standard percentage error 0.11%), they confirm the 
well-known fact that thermodynamics applies only to a system, not to a sub- 
stance. 
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Fig. 1. Idealized Hudleston plot. Smoothed values of the Hudleston A and B parameters are 
obtained by individually plotting y = i%u2/3/x = A + Bx where x = (uo)'l3 - u1I3, at T = 621.25,628.16, 
637.36, and 645.50 K. The slopes and intercepts of the idealized plots are obtained from least-squares 
fits according to eqs. (22) and (23). From data of Zoller.s 

THEORETICAL 

Our VSE equation of state follows directly from the assumption expressed 
by eq. (2) of reference 1, namely, 

Derivation of eq. (1) of this paper from eq. (2) of reference 1 is given in the earlier 
paper and will not be repeated here. 

The present study of poly(tetrafluoroethy1ene) and our current study of 
polyethylene have added considerably to our prior understanding of the nature 
of the liquid state. Thus, it appears that in the region of regular performance 
of polymers the liquid behaves in several ways like an ideal gas. For example, 
u = f (  T )  is strictly linear in this region, and a van der Waals-type equation of state 
properly describes the PVT relationships of both of these polymers. Also, our 
study of polyethylene provides a visual criterion distinguishing the two regions. 
In the region of regular performance, polyethylene is clear and transparent. In 
the irregular region it is translucent or opaque. Thus, the transition point which 
we define2 by ud now clearly represents the point at  which all crystallites have 
melted as heat is applied. With low molecular weight liquids this transition point 
is not visible. 

The similarity between the molten polymer and an ideal gas suggests a parallel 
that lends more credence to our original assumption. Thus, in an ideal gas at  
constant volume, 

c,  = (%)u = cp  - R 

from which 



VSE EQUATION OF STATE FOR LIQUIDS. V 1331 

I I I I 1 
2.05 2.10 2.15 2.20 S 2.25 2.00 

Fig. 2. First approximation of c, vs s. Heat capacity at constant volume, cu, is obtained from 
eq. (271, as explained in the text. The first approximation uses @T from eq. (19) and a from eq. (16). 
Subsequent approximations use y from eq. (24). (- - -), experimental c, = cp  - Tuay vs. s ,  y = a/&-; 
@T = 30uo’”/eA, eq. (19); (-) c, = (Zy/Zr)s 

a€, = C, aT, ( 2 4  

&, = T ,  as, (3) 

where su = sp - R In T,. 
Values of cp and sp are listed in the API 44 tables5 for many gases. Conversion 

to c, and su by use of eqs. (2) and (3) enables one to plot c, versus s,. Exami- 
nation of many such plots shows that for every gas there is a region over 
which 

c, = (const) - s, (4) 

Also, 

Thus, with n-heptane, for example, 

c, = 0.537128s,, 700 to 1000°C ( 4 4  

Combining eqs. (2) and (3), one writes 

Substituting l/K.su for cu in eq. (5) gives the assumption originally proposed, 
eq. (2) of reference 1. 

While we do not claim this to be a rigorous derivation of our equation of state, 
the similarity between the liquid region of regular performance and the ideal gas 
lends considerable credence to the fundamental nature of our relationship. 

In reference 2, there are eight plots of c ,  versus s for various systems. From 
these plots, the regions of “regular” and “irregular” performance are clearly 
evident, since the plot deviates from the straight line (direct proportionality) 
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Fig. 3. Third approximation of c,  vs s. The coefficient of thermal pressure, 7, is from eq. (24), 
with c3 from the slope of the c,-vs-s line of the second approximation; c2  is from eq. (26), with f l  from 
eq. (29). 

TABLE I 
PVT Data of Zolle$ SliKhtlv Modified 

P .  bars 

0 98.0665 196.133 294.200 392.266 0 
Lupton 

T ,  K v ,  ml equation 

603.56 0.637 0.642 
608.56 0.642 0.646 
615.96 0.648 0.621 0.652 
621.65 0.653 0.627 0.608c 0.655 
628.16 0.661 0.632 0.612 0.597 0.661 (identical 

with Zoller’s) 
637.36 0.669 0.63628 0.616d 0.601 0.589 0.668 
645.56 0.677 0.641b 0.620 0.606 0.594 0.674 

a 0.637, Zoller’s value. 
0.643, Zoller’s value. 
0.607, Zoller’s value. 
0.617, Zoller’s value. 

as the melting temperature is approached. The exact point at which the de- 
viation begins is related to the average separation of the molecules. We call this 
point Ud (defined in ref. 2) which appears to be relatively constant for any given 
family or homologous series of liquids such as the n-alkanes. 
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In the region of regular performance, the volume-dependent functions fl,  f2, 
and f3 are defined in terms of their derivatives as follows: 

- c2 _- df 1 

du 

- = o  df 2 

du 
d2 In f3 

du2 
-- - uPew 

(7) 

where p = a constant and w = A + Bu + Cu2. 
Since the above exact definition Of f3 involves a double integration and re- 

quires five parameters (p, A, B, C, and the integration constant K )  it is a great 
simplification to use an approximation equation, eq. (12), which could be defined 
in terms of its derivative as 

We hasten to point out, however, that this approximation equation is not suffi- 
ciently precise to extrapolate beyond the range of the data, and it is not safe to 
use its derivatives in the calculation of thermodynamic quantities involving 
partial andlor successive derivatives off 3. 

In the region of regular performance all thermodynamic quantities obtained 
from constant-volume derivatives of eq. (1) can be calculated with great accuracy 
as far as our studies have gone. Such calculations involve only three parameters, 
c1, c2, and c3. Somewhat less precise calculations of energy from eq. (1) require 
two more parameters, c4 and c5. 

In the region of irregular performance, we have shown2 how the deviations can 

I 7 7  
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Fig. 4. Third approximation of f l  vs u. Again, f l  comes from eq. (29), using cg  from the second 
approximation of c, vs s. 
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be evaluated with reasonable accuracy by introducing corrections in fl ,  f2, and 
f 3 ,  as explained in reference 2. Since this paper considers only the region of 
regular performance of poly(tetrafluoroethylene), no further reference to these 
corrections need be made here. The region of regular performance of the 
poly(tetrafluoroethy1ene) samples measured by the experimenters whose data 
we have usedw appears to start at about U,-J = 1.73, or 600 K. Data are available 
up to 725 K. 

Integration of eqs. (6), (71, and (9) gives 

flcalc = c1  + c2u (10) 

f2ca1c = ~3 (11) 

(12) In f3calc = c4 + c5 In u 

where 

u-1 = u1/3 - u01/3 (13) 

The physical constant UO, which we sometimes refer to as the “occupied vol- 
ume,” may be obtained directly from viscosity data by using our viscosity 
equationg: 

= A eB k) 
where uf = u - uo and u = specific volume. 

When viscosity data are not available, other methods of estimating uo can be 
used. In the case of poly(tetrafluoroethylene), determination of uo was relatively 
simple since the specific volumes were found to be linear with T ,  and the y-in- 
tercept therefore is UO. Because of this linearity, u a  is a constant, see eq. (17). 

GENERAL CALCULATIONS 

The data used in the present study are the calorimetric data of Douglas and 
Harmad and the PVT data of Lupton7 and Zoller.8 

We have frequently employed the Hudleston equation as a tool to obtain ac- 
curate specific volumes from PVT data.1° This criterion, explained more fully 
below, was used to check the atmospheric pressure-specific volumes of Zoller? 
Table I, and of Lupton7 [by calculation from his eq. (2)]. Zoller’s ambient 
pressure values appear to be accurate to three significant figures. 

Very slight modifications of four of Zoller’s higher pressure values were made 
(our Table I) to provide more perfect agreement with the idealized Hudleston 
plots (Fig. 1). These very minor modifications are shown in Table I, which lists 
the PVT data we have used. 

To the best of our knowledge, the samples of poly(tetrafluoroethy1ene) used 
by both Douglas and by Zoller were sufficiently alike so that the data from the 
two laboratories are compatible with each other. The four-place calorimetric 
data of Douglas and Harmad appeared to us to be excellent and were used 
without modification. 
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EVALUATION OF ACCURACY OF EXPERIMENTALLY 
DETERMINED SPECIFIC VOLUMES 

Earlier reference to Zoller’s data8 indicated that the published values of specific 
volumes a t  ambient pressures are accurate to three significant figures. Our 
evaluation of the accuracy of PVT data uses the Hudleston equation as a tool 
to calculate the most probable low-pressure values. This can be done because 
in high-pressure technique the higher-pressure measurements are more accurate 
than the low-pressure ones. This is fully discussed in references 10 and 11. If 
one determines the Hudleston line by means of the high-pressure values, then 
the low-pressure values can be corrected by putting the points on this line. 

By following this method it was determined that Zoller’s ambient pressure- 
specific volumes are indeed accurate to three significant figures. When plotted 
against T, the relationship u = f(T) was found to be linear. The deviations al- 
ternated, and the standard percentage error was only 0.0875% leaving no doubt 
about the linearity of u versus T. The y-intercept was 0.06013, which, as men- 
tioned above, must be u ~ .  The equation is 

(15) u = 0.06012997 + 0.0009553T 
From eq. (15), a = (l/u)[(du/dT),] becomes 

0.0009553 
a!=  

U 

and 

ua! = 0.0009553 (17) 
The specific volumes were calculated at  ’intervals of 25 from 575 K to conform 

to the calorimetric data, Table 5 of reference 6. 

CALCULATION OF PARAMETERS ~ 1 ,  cp, AND ~3 

There are many ways to calculate the parameters of eq. (11, but the simplest 
way is to first plot cu versus s and obtain c3 from the slope of the straight line from 
the origin through the points. Then 

c3 = - + 1  
slope 

TABLE I1 
Slopes of cu vs s and f l  vs u Lines 

c,, vs s f l  vsu SPE %a 

1st Approximation 0.625583 3.964482 0.01342 
2nd Approximation 0.625098 4.066381 0.01339 
3rd Approximationb 0.624471 4.079016 0.01333 
4th Approximation 0.624001 4.127895 0.02742 

a S.P.E. = 100[Z(yi - y)2/n]1/2. where yi = observed value, y = calculated value, and n = number 
of observations. 

The 3d approximation is obviously the correct one. 
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The heat capacity at  constant volume c, is obtained from the measured value 
a t  constant pressure cp by use of a relationship, eq. (271, involving y. The iso- 
thermal coefficient of compressibility PT, sometimes abbreviated “compress- 
ibility,” can be estimated roughly from a Hudleston equation plot by use of the 
following equations: 

30( u O )  1/3 

e A 
PT = 

where A is the Hudleston intercept from 
P v  213 

- A + &  y=x- 
x = (uO)1/3 - u1/3 

where uo = specific volume before compression and u = specific volume after 
compression. 

It is generally conceded by those familiar with high-pressure research that PT 
cannot usually be determined accurately from PVT data at  ambient pressure. 
This situation arises from the fact that the numerical value of PT increases 
rapidly as the external pressure is reduced to the neighborhood of 1 bar. Thus, 
a small error in u makes a large error in PT. A t  least four or preferably five sig- 
nificant figure specific-volume data are required to enable the accurate calcu- 
lation of PT from PVT data. Other measurements, such as velocity of sound 
or internal pressure, are generally preferred for the accurate determination of 

Because we had only three-place PVT data to work with, it was necessary to 
make “idealized” plots of the Hudleston equation in order to ensure accurate 
specific volumes at  1 bar. This was done by plotting the actual A and B values 
versus T and smoothing the observed quantities by applying least-squares fits 
as represented by eqs. (22) and (23): 

A = 21.255096 - 0.020408T S.P.E. = 0.0749% (22) 

B = -225.469776 + 0.383583T S.P.E. = 0.5448% (23) 
Although this procedure did not greatly improve the accuracy Of PT as calcu- 

lated from eq. (19), this failure was not important because accurate values Of PT 
can be obtained through the use of y, since PT = a / y  and a is known with high 
accuracy, eq. (16). 

Reference to part 111 of this series3 will show that y can be calculated with high 
accuracy over the entire region of regular performance by use of the following 
equation: 

PT. 

and 

where 

and 
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Obviously, cl, c2, and c3 must be known to apply eqs. (24)-(26), and these 
parameters are determined for poly(tetrafluoroethy1ene) as follows: 

Heat capacity at constant pressure, cp, and entropy at  constant pressure, sp,  
are available from reference 6. Therefore, cu can be obtained from eq. (27) if 
y is known: 

(27) C, = cp - T V C V ~  . 

For poly(tetrafluoroethylene), 

Tu = 0.0009533T L!- (28) 

Using the approximate values of PT obtained from eq. (19) and the smoothed 
values of the Hudleston A values, one can calculate a set of approximate c, values. 
Figure 2 shows such a set plotted versus s. The slope of the best line from the 
origin through these points is given by ZylZx = 0.625583. This “average” slope 
gives a starting point for subsequent approximations that ultimately lead to 
highly accurate values of c,. Thus from the average slope found in approxi- 
mation 1, one calculates a value of 3.964482 for c3. This approximate value is 
used in the following equation to calculate the first f lobs: 

PT 

Now, one plots flobs versus u for the first approximation of fl,  which provides 
the first approximation of c2 from eq. (26). Knowing [lealc and CZ, a much more 
precise value of y may now be calculated from eq. (24), again using Sobs obtained 
from reference 6. 

With the new value of y, one may repeat the calculation of c, from eq. (27) and 
go through the same process again. Four approximations were made with the 
results listed in Table 11. The third approximation is evidently the correct one, 
whence c 1 =  67.757231, cz = 4.079016, and c3 = 2.601356. 

CALCULATION OF PARAMETERS ~4 AND ~5 

Many thermodynamic quantities are obtained from the partial andlor suc- 
cessive derivatives of energy at constant volume. In all of these instances, only 
three parameters, c1, CZ, and c3, are required. To calculate energy from eq. (l), 
however, the value of f3  must be found, and this requires two more parameters, 
c4 and c5. These are obtained directly from calorimetric data (and the three 
primary parameters) as follows: From eq. (l), one writes 

TABLE I11 
Parameters 

c3 = 2.601356 

CI = 67.757231 
C P  = 4.079016 

~4 = 5.099462 
~5 = -0.502806 

determined from PVT data 1 
uo1I3 = 0.391769 (physical constant) 
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A very good approximation for f3calc is eq. (12), and a least-square calculation 
gives c4 and c5. 

For poly(tetrafluoroethy1ene) the values were found to be c4 = 5.099462 and 
c5 = -0.502806. The fit is excellent over the range of the data (S.P.E. = 0.0163), 
but eq. (12) is still only an approximation that fails in the neighborhood of T,. 
Generally speaking, the derivatives of eq. (12) cannot be used safely to calculate 
thermodynamic quantities directly. Other methods are available to obtain f3’ 
and f3” [ref. 2, eq. (15) and (16)] should they be required. 

Table I11 lists all parameters involved in the present study. 

CALCULATION OF FOUR THERMODYNAMIC QUANTITIES 
PERTAINING TO THE SYSTEM “LIQUID 

POLY (TETRAFLUOROETHYLENE)” 

Calculations of T, s, cp, and E over the range of 600-725 K were made from the 
following equations and the results compared with the observed values: 

where flcalc is from eq. (10) and 

The scale value is obtained from eqs. (31) and (32). 
The cpcalc value is obtained from 

where Ycalc is from eq. (24), using Scale in place of sobs. [The values of sobs and 
sCdc are identical in the case of poly(tetrafluoroethy1ene) over the range of these 
studies.] 

The ccalc value is obtained from 

Ecalc = flcalc sEZ + fscalc 
where facalc is from eq. (12). 

Table IV lists the results. 

(34) 
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